
STRATEGY & DIGITAL

TOORAJ HELMI 10/2018

STRATEGY AND OPERATIONS COMPLIMENT EACH OTHER

STRATEGY is about:

- What product to sell
- How to build it?
- To whom to sell it.
- At what price
- With what performance
- How to repeat the sell

OPERATIONS

- Capture how work is done daily
- Defined using business processes
- Include three components: sales forecast, resource capacity, budgets (OP-EX, CAP-EX)

WHAT DIFFERENT STRATEGIES EXISTS AND WHY?

Stabilizing Strategy

Locally stabilizes a firms position among existing competition

Cannot be long-term reason to exist since change is inherent in and around us

Disruptive Strategy

Locally reconstructs a new position within existing competition

Can produce short-term birth

Reconstructive Strategy

Globally reconstructs a new position beyond the existing competition

Can produce continuous reasons to exist to adjust and introduce change

WHAT TECHNOLOGY HAS TO SAY?

Supporting a stabilizing strategy

"Enterprise Architecture"

Automates repetitive tasks → reduces labor → reduces cost

Increases accuracy and speed of processes → more customers to be serves at a higher quality → increases revenue and growth

Increases employee productivity → Reduces cost and increases revenue

Works along two dimensions integration or standardization

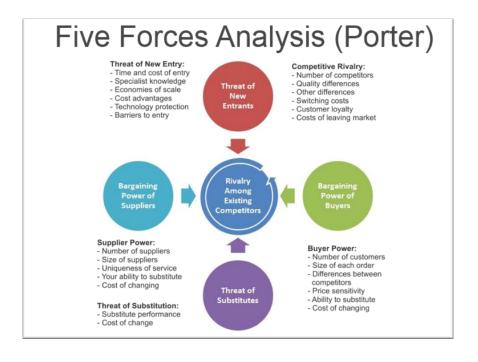
Supporting a disruptive strategy

"Tech Startup"

Great way to build platforms

Majority of the last decade startups are tech startups

Supporting a reconstructive strategy "Digital Transformation"


As the fastest changing phenomenon around shapes what customers demand

Provides unique ways to create reconstructive strategies around customer, competition, data, innovation, and value

STABILIZING STRATEGY & ENTERPRISE ARCHITECTURE

HOW TECHNOLOGY CAN HELP IMPLEMENT A STABILIZING STRATEGY USING STANDARDIZATION & INTEGRATION

STABILIZING STRATEGY

FRAMEWORK: ENTERPRISE ARCHITECTURE

Four operating models

Business Process Integration

Coordination

Unique business units with a need to know each other's transactions

- Examples: Commonwealth Bank of Australia, MetLife, Aetna
- Key IT capability: access to shared data, through standard technology interfaces

Diversification

- Independent business units with different customers and expertise
- Examples: Johnson & Johnson, Pacific Life, ING
- Key IT capability: provide economies of scale without limiting independence

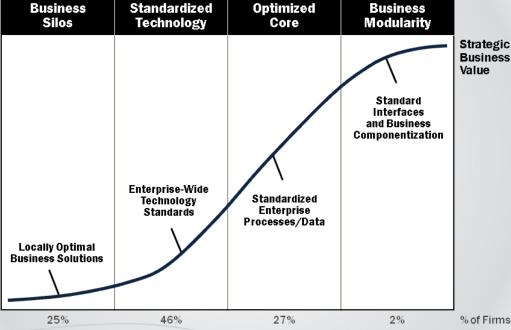
Unification

- Single business with global process standards and global data access
- Examples: Southwest Airlines, Dow Chemical, UPS Package Delivery
- Key IT capability: enterprise systems reinforcing standard processes and providing global data access

Replication

- Independent but similar business units sharing best practice
- Examples: Marriott, 7-Eleven Japan, ING DIRECT
- Key IT capability: provide standard infrastructure and application components for global efficiencies

Low


High

Business Process Standardization

MITSIOAN MANAGEMENT

Source: Enterprise Architecture as Strategy: Creating a Foundation for Business Execution, J. Ross, P. Weill, D. Robertson, HBS Press, 2006.

Enterprise architecture builds agility over time

Source: Enterprise Architecture as Strategy: Creating a Foundation for Business Execution, J. Ross,) P. Weill, D. Robertson, HBS Press, 2006.

Percentage of firms in each stage updated based on a survey of 1508 IT executives

TOOL I: CLOUD ENABLES A WELL-ARCHITECTED FRAMEWORK

Operational Excellence

Monitor systems

Anticipate failure

Perform operations as code

Security

Maintain the confidentiality and integrity of data

Protect information, systems, and assets

Identify security incidents

Reliability

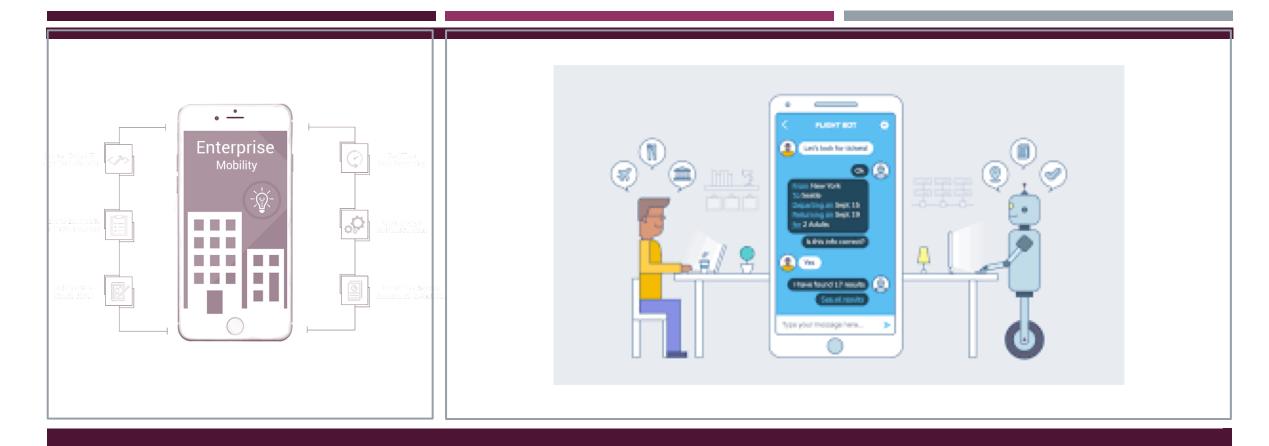
Scale horizontally to increase availability

Automatically recover from failure

Stop guessing capacity

Performance Efficiency

Democratize advanced technologies


Go global in minutes

Experiment more often

Cost Optimization

Only pay when using

Share unused capacity (PaaS)

TOOL 2: DIGITAL WORKPLACE

TOOL 3: CLOUD MIGRATION

RECONSTRUCTIVE STRATEGY & DIGITAL TRANSFORMATION

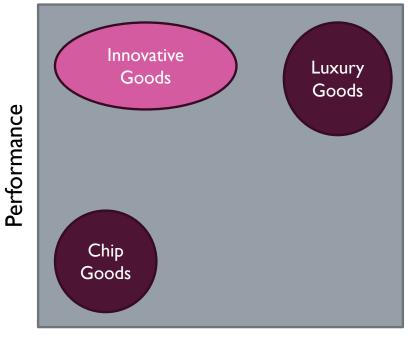
HOW TECHNOLOGY CAN HELP RECONSTRUCTIVE STRATEGIES USING DIGITAL TRANSFORMATION

PRODUCT DIMENSION

- For a given product (good or service), its continuum includes all other products that have an absolute cross elasticity of demand of $> \alpha$: $|E_{A\sim B}| > \alpha$.
 - Below table shows all cases. This row shows strategy domain for a movie theatre:

$E_{A\sim B}<-\alpha$	$ E_{A\sim B} <\alpha$	$\alpha < E_{A \sim B} < \sim 100\%$	$E_{A\sim B}$ ~ 100%
Complement	Out of Domain	Alternative	Substitute (Industry)
Day care	Furniture	Nearby Restaurants	Netflix

- Product continuum contains complements, alternatives, and substitutes.
- Not easy to quantify α . So we can use a industry matrix


Cross elasticity of demand or crossprice elasticity of demand measures the responsiveness of the quantity demanded for a good to a change in the price of another good, ceteris paribus. It is measured as the percentage change in quantity demanded for the first good that occurs in response to a percentage change in price of the second good:

$$E_{A\sim B} = \frac{\Delta Q_A \%}{\Delta P_B \%}$$

For example, if, in response to a 10% increase in the price of fuel, the demand for new cars that are fuel inefficient decreased by 20%. A negative cross elasticity denotes two products that are complements, while a positive cross elasticity denotes two substitute products.

PROPOSITION DIMENSION

 Specific performance and price points that a firm decides to sell its product: Toyota produces mid-size cars at a low price whereas Porsche produces sports cars at high prices.

Price

OTHER DIMENSIONS

- Value Dimension: set of activities that takes a product from its initial birth at a given firm to the hand of buyer.
 - Extended value Dimension: value dimension extended with upstream and downstream activities along that are accomplished by suppliers and buyers.
- Operations Dimension: operations that take place after the product is sold to keep it usable. E.g. maintenance.
- buyer Dimension: for a given product, includes all the buyer can receive value by purchasing the product. It also includes the intermediaries that could exist before the product is received by the end-customer. E.g. clinics can be intermediaries to provide a specific medication to a patient. Both clinic and patient belong to the buyer continuum.
- Demand Dimension: includes the first and all the possible subsequent opportunities to sell a product to a customer. E.g. a patient who comes for a visit to a clinic can go through multiple physician visits until he is completely healed rather than being seen by the first physician he made an appointment, given a prescription and let go.
- Time Dimension includes future time epochs that a firms can predict how is strategy should be set based on existing market trends.

Strategy Domain

Product Dimension	Value Dimension		Proposition Dimension		Demand Dimension	Time Dimension
----------------------	--------------------	--	--------------------------	--	---------------------	-------------------

FRAMEWORK: DIGITAL TRANSFORMATION

Transforming the entire firm: redefining customer value proposition, value-added processes, and people's working method

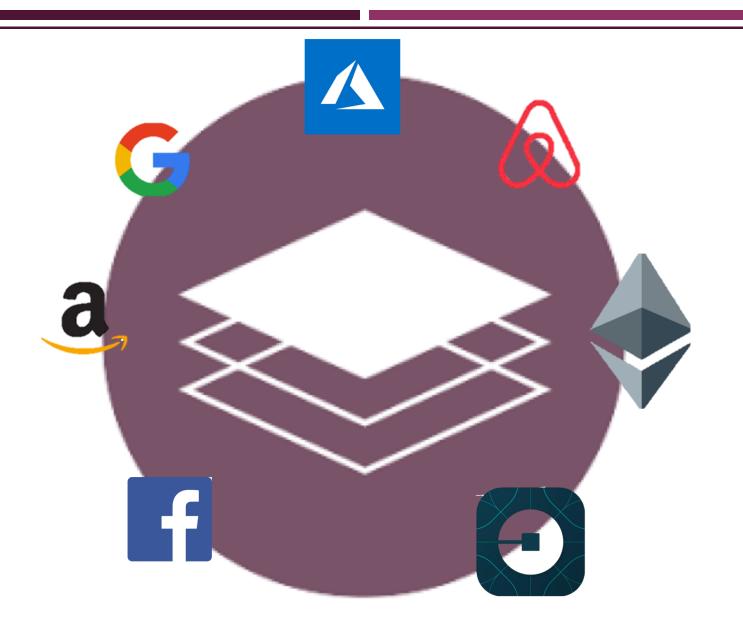
Customers

- Dynamic Networks
- Economies of Value
- Inspirational marketing
- Key Influencers

Competition

- Co-opetition
- Fluid Industries
- Platforms

Data


- Generated Continuously
- Unstructured Data
- Produce Information

Innovation

- Experimentation
- Problem vs Solution
- MVP & Iterations

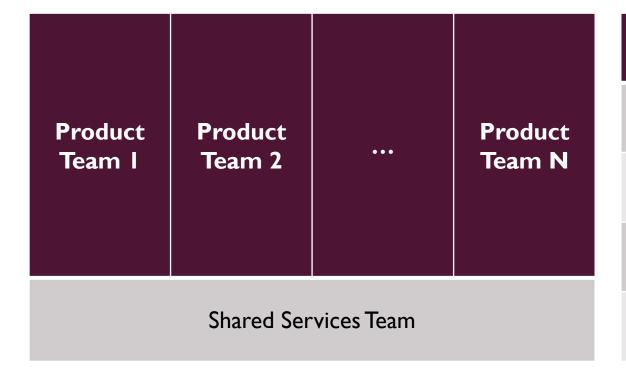
Value

- Evolve vs Optimize
- Not industry-specific
- Futuristic Value Prop

APPROACH I: PLATFORMS

APPROACH 2 MICROSERVICES ORGANIZATION

APPROACH 3 OMNICHANNEL



TRANSITION FROM TRADITIONAL TO DIGITAL IT

FROM PRODUCT TEAMS TO SERVICE TEAMS

TRADITIONAL VS DIGITAL IT

Traditional IT Organization

Digital IT Organization

Product Team I	Product Team 2	•••	Product Team N					
Service Team N								
•••								
Service Team 2								
	Service	Team I						

Predigital

Pilot programs

Digital factories

Digitally integrated1

Digital pure play

Traditional applicationdomain-based model with some agile adoption

- Small digital pods; rest of technology organization stays conventional
- Digital product teams and conventional technology operating separately

Digital product teams collaborating with conventional technology

teams

Holistic productbased organization

- group organized based ture domains
- * Small ringfenced digital team with high autonomy

Other teams

remain orga-

nized around

conventional

application

and infra-

structure

groups

 Multiple digital teams with dedicated and pooled resources

Minimal

interoperability

between digital

and conven-

tional teams

operating at

Conventional

application

groups starting to experiment

with agile methodologies

different speeds

- - around products, internal capabilities (platforms), and system of records

on minimizing redundancy and maximizing interoperability between teams

- Teams organized Leverages
- Significant agile and DevOps adoption by conventional groups; product teams fully agile
- Increased focus

capability-

teams (tribes

and chapters)

oriented

delivery

At-scale

enables

automation

continuous

integration and continu-

ous delivery

PHASES

DIGITALIZATION

- Technology on application and infrastruc-
- Teams siloed and use waterfall methodologies