
Docker DevOps
With focus on Microsoft stack including VSTS and Azure



DevOps Philosophy



Value of DevOps

• Validated Learning

• Shorten Your Cycle Time

• Eliminate Human Mistake

• Accurate release management

• Agile Organization

• Reduce Costs

• Manage Risk



DevOps = 
Infrastructure As Code +

Continuous Integration + 
Continuous Deployment



Traditional CI/CD



Pitfalls

• Things work in Dev but not in production

• It is not clear who is in charge of setting up the server to run the code



Dockers and Containers



Dockerization: Implement once, run 
everywhere



Virtual Machine vs Container





CI/CD With Docker



Docker in Practice

• See: https://docs.docker.com/get-started/

Container
• User DockerFile to specify the dependencies

Services

• Multiple Containers

• Use a simple docker-compose.yml

Swarm

• A cluster of computers used to host the containers

• One manager + multiple workers

Stacks

• Connecting multiple services, network, and persistence mechanism using a complex 
docker-compose.yml

https://docs.docker.com/get-started/


DockerFile
FROM microsoft/aspnet:4.6.2

ARG source

WORKDIR /inetpub/wwwroot

COPY ${source:-obj/Docker/publish} .



docker-compose.yml

version: '3'
services:
azuredevops:
image: azuredevops
build:
context: .\AzureDevOps
dockerfile: Dockerfile

ports:
- "80"

networks:
default:
external:
name: nat



Docker Compose Files



VSTS Integration



DevOps Tools: Microsoft vs Others



More Specific Tools for .NET Based Apps

Criteria .NET CORE .NET 
FRAMEWORK

OS Type Any Windows Only

App Type Console, API, 
Light ASP.NET

WPF, WCF,
WW, SignalR

Architecture
Type

Microservices Monolithic

Project Type New Existing





End-to-End Docker DevOps Workflow



Demo 1: Inner Loop

1. Build an ASP.NET project

2. Enable Docker Support

3. Build in release to create the image in /obj/publish folder

4. docker images shows the image added to local docker repo

5. docker run -d -p:1234:80 [image name] to run the container

6. docker container ls to list running containers and see the container id

7. docker inspect [container id] to get the IP address the container is 
assigned (windows by default assgin an ip in range of 172.24/16.

8. Browse to [IP Address]:1234



CI with VSTS to Azure 

• Go to VSTS and add a definition 
based on ASP.NET with Containers 

• Add a test step to run unit tests

• Edit the definition and change host 
to VS2017 (it understand docker)

• Set the trigger to run after each 
push



Demo 2-A: CI to Azure

• Add some logic to ASP.NET controller and add a unit test for it

• Push the code to GIT

• Go to VSTS and see that a build is triggered

• When build is over look at results of running unit tests

• Open up the azure image registry and see that a new image is added

• Pull the image on local and run it
• Need to login to Azure Container Registry: docker logins –u [username –p 

password]



CI with VSTS for Docker

• Add a docker-enabled VSTS host. Two options:
• Regular private VSTS agent. 

• VSTS + Docker agent Linux container: 
https://hub.docker.com/r/microsoft/vsts-agent/

• Docker-compose.ci.build.yml should contain repo namespace
• thelmi/azuredevops

• The docker image endpoint should not contain the namespace:
• https://index.docker.io/v1/

• The project name should be all lowercase

https://hub.docker.com/r/microsoft/vsts-agent/


Demo 2-B: CI to Docker

• Add some login to ASP.NET controller and add a unit test for it

• Push the code to GIT

• Go to VSTS and see that a build is triggered

• When build is over look at results of running unit tests

• Open up the Docker registry and see that a new image is added

• Pull the image on local and run it



CD: Azure Container Services

• Create a ACS in swarm mode in Azure.
• In order to generate ssh key you can PuttyGen on windows makes sure to save 

the private key with passphrase to be able to ssh to the master node.

• Can connect to the master node using SSH:
• ssh thelmi@azuredevopscoremgmt.eastus.cloudapp.azure.com -A -p 2200



Azure Container Services Swarm



Demo 3-A: CD to Azure



Demo 3-B: CD to Docker Swarm



Implementation Strategy



Step 1 - Set up the DevOps Pipeline

• Build Servers

• Environments

• Image Registry

• Swarm Clusters

• CI/CD Definitions



Step 2 - Dockerize

• New/Stateless Application
• Define dockerfile and docker-compose.yml

• State-ful Application
• Application servers with stateful applications

• Load balancer with session affinity to ensure the user always goes to the same container instance
• External session persistence mechanism which all container instances share

• Databases
• Only containerize the Engine and not the data itself. This can be done using a host volume

• Applications with shared filesystems
• Use a host volume which is often mounted to a shared files ystem

• Complex existing Application
• Run container, install the product, and then save the changes to an image



Step 3 - Define Image Components

Base Image

Release Image Environment Image

What's inside the image OS, middleware, dependencies Base image, release artifacts, 
configuration genericto the 
environment

Release image, 
configuration specific to the 
environment

What's outside the image Release artifacts, configuration, 
secrets

Configuration specific to the 
environment, secrets

Secrets

Advantages Most flexible at run time, simple, 
one image for all use cases

Some flexibility at run time while 
securing a specific version of an 
application

Most portable, traceable, and 
secure as all dependencies are in 
the image

Disadvantages Less portable, traceable, and 
secure as dependencies are not 
included in the image

Less flexible, requires management 
of release images

Least flexible, requires 
management of many images

Examples Tomcat 
(dtr.example.com/base/tomcat7:3)

Tomcat + myapp-1.1.war 
(dtr.example.com/myapp/tomcat7:
3)

Tomcat + myapp-1.1.war + META-
INF/context.xml 
(dtr.example.com/myapp/tomcat7:
3-dev)



Step 4 – Specify Configuration Management

When What Where

Yearly build Enterprise policies and tools Enterprise base image Dockerfiles

Monthly build Application policies and tools Application base image Dockerfiles

Monthly/weekly build Application release Release image Dockerfiles

Weekly/daily deploy Static environment configuration Environment variables, docker-
compose, .env

One-off Deploy Dynamic environment configuration Secrets, entrypoint.sh, vault, CLI, 
volumes

Run Elastic environment configuration Service discovery, profiling, 
debugging, volumes



Microservices Architecture



Application Architecture – State Management

Data 
Volume

Data Volume 
Container

Volume 
Plugin

SQL/No 
SQL/Cache



Application Architecture - Composition 



Application Architecture – Data Composition



Application Architecture – Access Control

Security

Quotas 

Caching

Routing



Application Architecture - Communication



Windows Container Networking



To do

• https://docs.microsoft.com/en-
us/virtualization/windowscontainers/manage-containers/container-
networking

https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-networking


Nano Server


