Docker DevOps

With focus on Microsoft stack including VSTS and Azure

DevOps Philosophy

Value of DevOps

* Validated Learning

e Shorten Your Cycle Time

* Eliminate Human Mistake

* Accurate release management
* Agile Organization

oF * Reduce Costs

& MpProveMeNT

* Manage Risk

DePLOYMeNT FRrequeNcY
/ >

DevOps =
Infrastructure As Code +

Continuous Integration +
Continuous Deployment

BUILD Suceeped

v/ Gompld'ea

ot wagns I I AL UAt e “ hm’

v g | |

oSttt |
O{AATY oA)~

I

=11 TRIGGER <
FeeDeack

FeeDBaCK

g
o
7‘ 0000000

gL
\

i

\é

AP Y mal> .. APPROVAL E

——
/-

Traditional CI/CD

Release pipeline in Team Services

I T
H GI/TFVC ——» Build (+tests) ——» Maﬁl;:ifent ——> Environment

Edit code Commit/push to Continuous Continuous
source repository Integration Deployment

Pitfalls

* Things work in Dev but not in production
* It is not clear who is in charge of setting up the server to run the code

Dockers and Containers

Dockerization: Implement once, run
everywhere

Dockerize: i/\l{

¢ Run anywhere

Windows Server Linux S Service

Container Container Provider

Docker

Virtual Machine vs Container

App 1 App 2 App 3
Bins/Libs Bins/Libs Bins/Libs

App 2 App 3

App 1
Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS

Container Engine
Hypervisor

Host Operating System Operating System

Infrastructure

1B A

Infrastructure

[l =4

BaS|C taXOnOmy ln DOCker Hosted Docker

Registry
— On-premises

Docker Trusted (‘n’ private organizations)
Registry on-prem.

Docker Hub
Registry

A Registry -

Stores many
2 static images Docker Trusted

= J Registry on-cloud
l Azure Container

Images Reqi
Static, persisted container image egistry

AWS Container | Public Cloud
Registry (specific vendors)

Google
Container
Registry

Container

Image-instance running
an app process (service/web) Quay
Registry

Other Cloud

CI/CD With Docker

version Control Docker Trusted Reglsiry Co

ERER -_— E
- -_—
L -
tag - = paE
a -
L r
. . 'l._l - 1 L I." i "-\.1
= 1 i H 1
¥ = = 5 Fl
. 1 " a [
. - v

L L]

- LR L] | |

Bulld Cluster | Mon-Production Environments | Production

Docker Universal Control Plane

Docker in Practice

* See: https://docs.docker.com/get-started/

N
e User DockerFile to specify the dependencies
J
: : M
e Multiple Containers
e Use a simple docker-compose.yml)
.)
e A cluster of computers used to host the containers
e One manager + multiple workers)

e Connecting multiple services, network, and persistence mechanism using a complex
docker-compose.yml

https://docs.docker.com/get-started/

DockerFile

FROM microsoft/aspnet:4.6.2
ARG source

WORKDIR /inetpub/wwwroot

COPY S{source:-obj/Docker/publish} .

Use an official Python runtime as a parent image
FROM python:2.7-slim

Set the working directory to /app
WORKDIR /app

Copy the current directory contents into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
RUN pip install -r requirements.txt

Make port 80 available to the world outside this container
EXPOSE 8@

Define environment variable
ENV NAME World

Run app.py when the container launches
CMD ["python™, "app.py"]

docker-compose.yml

version: '3’
services:
azuredevops:
image: azuredevops
build:
context: .\AzureDevOps
dockerfile: Dockerfile
ports:
- "80"
networks:
default:
external:
name: nat

version: "3"
services:
web:

replace username/repo:tag with your name and image details

image: username/repository:tag
deploy:
replicas: 5
resources:
limits:
cpus: "@.1"
memory: 58M
restart_policy:
condition: on-failure
ports:
- "80:80"
networks:
- webnet
networks:
webnet:

Docker Compose Files

Multiple docker-compose files

docker-compose.override.ym| docker-compose.prod.ym| docker-compose.staging.ym|

VSTS Integration

DevOps Tools: Microsoft vs Others

Host Microsoft technologies Third-party—Azure pluggable
Platform for e Microsoft Visual Studio and Visual | ® Any code editor (e.g., Sublime)
Docker apps Studio Code e Any language (Nodejs, Java, Go,
e NET etc.)
e Microsoft Azure Container Service | ® Any orchestrator and scheduler
e Azure Service Fabric e Any Docker registry
e Azure Container Registry
DevOps for e Visual Studio Team Services e GitHub, Git, Subversion, etc.
Docker apps e Microsoft Team Foundation Server | e Jenkins, Chef, Puppet, Velocity,

Azure Container Service

Azure Service Fabric

CircleCl, TravisCl, etc.

e On-premises Docker Datacenter,
Docker Swarm, Mesos DC/OS,
Kubernetes, etc.

Management and
monitoring

Operations Management Suite

Applications Insights

e Marathon, Chronos, etc.

More Specific Tools for .NET Based Apps

Criteria .NET CORE .NET . .
-- What OS to target with .NET containers

DR e ATy Windows Only NET Framework Windows gﬁ:ﬂ'ﬁ?:ﬁ‘sﬂith
3.5, 4.x Server Core .
App Type Console, API, WPF, WCF,

L|ght ASP.NET WW, Signa IR Cloud Optimized,
Windows Egsrltraeilner 0s
. Nano Server S_maller, Faster Start
Architecture Microservices Monolithic Time

Type
Project Type New Existing

Debian, Alpine, etc.
Kestrel

Smaller, Faster Start
Time

Inner-Loop development workflow for Docker apps

3.

5.
Run 6.
Containers / Test

Compose app your app or
microservices

1. 2.
Write
Dockerfile/s
your app

=

4. optin)
Define services
by writing

Create Images
defined at
Dockerfile/s

|
Images

docker build

Base I 1
|

Code

docker-compose.yml

My
Containers
http
aCCess..

-
o~

mages
Remote Local

Docker Registry Docker

7_ (i.e. Docker Hub) Repos

git push Push or

Continue
developing

End-to-End Docker DevOps Workflow

Demo 1: Inner Loop

Build an ASP.NET project

Enable Docker Support

Build in release to create the image in /obj/publish folder

docker images shows the image added to local docker repo

docker run -d -p:1234:80 [image name] to run the container

docker container Is to list running containers and see the container id

N o kA whRE

docker inspect [container id] to get the IP address the container is
assigned (windows by default assgin an ip in range of 172.24/16.

8. Browse to [IP Address]:1234

Cl with VSTS to Azure

e Go to VSTS and add a definition
based on ASP.NET with Containers

* Add a test step to run unit tests

 Edit the definition and change host
to VS2017 (it understand docker)

 Set the trigger to run after each
push

== (et sources

>3

100 100 100
1] 1] 1]

»

© AzureDevOps ¥ master

NuGet restore
MNuGet

Build solution ***.sIn
Visual Studio Build

Run Unit Tests

Visual Studio Test

Build services

MUYV Docker Compose

Push services

MUYV Docker Compose

Lock services

MHAYIRYY Docker Compose

Copy Files to: $(Build.ArtifactStagingDire...

Copy Files

Publish Artifact: docker-compose
Publish Build Artifacts

Demo 2-A: Cl to Azure

* Add some logic to ASP.NET controller and add a unit test for it

* Push the code to GIT

* Go to VSTS and see that a build is triggered

 When build is over look at results of running unit tests

* Open up the azure image registry and see that a new image is added

* Pull the image on local and run it

* Need to login to Azure Container Registry: docker logins —u [username —p
password]

Cl with VSTS for Docker

* Add a docker-enabled VSTS host. Two options:

* Regular private VSTS agent.

* VSTS + Docker agent Linux container:
https://hub.docker.com/r/microsoft/vsts-agent/

* Docker-compose.ci.build.yml should contain repo namespace
* thelmi/azuredevops

* The docker image endpoint should not contain the namespace:
* https://index.docker.io/v1/

* The project name should be all lowercase

https://hub.docker.com/r/microsoft/vsts-agent/

Demo 2-B: Cl to Docker

* Add some login to ASP.NET controller and add a unit test for it
* Push the code to GIT

* Go to VSTS and see that a build is triggered

 When build is over look at results of running unit tests

* Open up the Docker registry and see that a new image is added
* Pull the image on local and run it

CD: Azure Container Services

e Create a ACS in swarm mode in Azure.

* |n order to generate ssh key you can PuttyGen on windows makes sure to save
the private key with passphrase to be able to ssh to the master node.

* Can connect to the master node using SSH:
* ssh thelmi@azuredevopscoremgmt.eastus.cloudapp.azure.com -A -p 2200

Azure Container Services Swarm

(swarm—masters—ip\ (swarm—nodes—ip\
_ Public IP/FQDN) Public IP/FQDN)

(swarm-masters-Ib w NAT Rules (swarm-nodes-Ib w User-Defined
kgzure Load Balancer} for S&H Azure Load Balancer) Load Balancing Rules

2200¢s5h 12201 55h N 2202 55h

Docker Swarm Clugter Virtual Network

i

1

|

Swarrh Managers Availability Set D/ Swarm’'Nodes Availability S XJ !
O V i

swarm-m-0 swarm-m-1 swarm-m-2 swarm-node-0 swarm-node-1 swarm-node-2 swarm-node-3 E
10.0.0.4 10.0.0.5 10.0.0.6 192.168.0." 192.168.0." 192.168.0.” 192.168.0.” i
CoreOS CoreOS CoreOS CoreOS CoreOS CoreOS CoreOS i
Standard_A1 Standard_A1 Standard_A1 Standard D2 Standard D2 Standard D2 Standard D2 i
1

1

Demo 3-A: CD to Azure

Demo 3-B: CD to Docker Swarm

Implementation Strategy

Step 1 - Set up the DevOps Pipeline

* Build Servers

* Environments

* [mage Registry

e Swarm Clusters

* CI/CD Definitions

Step 2 - Dockerize

* New/Stateless Application
* Define dockerfile and docker-compose.yml

 State-ful Application

* Application servers with stateful applications
* Load balancer with session affinity to ensure the user always goes to the same container instance
* External session persistence mechanism which all container instances share

e Databases
* Only containerize the Engine and not the data itself. This can be done using a host volume

* Applications with shared filesystems
* Use a host volume which is often mounted to a shared files ystem

* Complex existing Application
* Run container, install the product, and then save the changes to an image

Step 3 - Define Image Components

Base Image

What's inside the image

What's outside the image

Advantages

Disadvantages

Examples

Release Image

OS, middleware, dependencies

Release artifacts, configuration,
secrets

Most flexible at run time, simple,
one image for all use cases

Less portable, traceable, and
secure as dependencies are not
included in the image

Tomcat
(dtr.example.com/base/tomcat7:3)

Environment Image

Base image, release artifacts,
configuration genericto the
environment

Configuration specific to the
environment, secrets

Some flexibility at run time while
securing a specific version of an
application

Less flexible, requires management
of release images

Tomcat + myapp-1.1.war
(dtr.example.com/myapp/tomcat7:
3)

Release image,
configuration specific to the
environment

Secrets

Most portable, traceable, and
secure as all dependencies are in
the image

Least flexible, requires
management of many images

Tomcat + myapp-1.1.war + META-
INF/context.xml
(dtr.example.com/myapp/tomcat7:
3-dev)

Step 4 — Specity Configuration Management

When
Yearly build

Monthly build

Monthly/weekly build
Weekly/daily deploy

One-off Deploy

Run

What
Enterprise policies and tools

Application policies and tools

Application release

Static environment configuration

Dynamic environment configuration

Elastic environment configuration

Where
Enterprise base image Dockerfiles

Application base image Dockerfiles

Release image Dockerfiles

Environment variables, docker-
compose, .env

Secrets, entrypoint.sh, vault, CLI,

volumes

Service discovery, profiling,
debugging, volumes

Microservices Architecture

Application Architecture — State Management

Data Volume and Data Volume Container Data
< Microsoft VOIume
D Azure
] Sateles Data Volume
\[Container
Volume SQL DB

container
—
Browser or

Client app . \@ Volume
[!]/[]/a Plugin

\ Stateless
SQL/No
SQL/Cache

Application Architecture - Composition

Monolithic deployment approach

A traditional application has
most of its functionality within a

few processes that are

componentized with layers and

libraries.

Scales by cloning the app on

multiple servers/VMs

1

[c]
[c]

o
5
0

App 1

Coarse-grained
density of
apps/services

Need to deploy
the full
application

Microservices application approach

A microservice application
segregates functionality into
separate smaller services.

Scales out by deploying each
service independently with
multiple instances across

servers/VMs

—_——————— —_—————— e

[—

Data in Traditional approach

* Single monolithic database
« Tiers of specific technologies

g d
Web Tier n

- En

, L]
Services Tier

\

(
Cache Tier

\

SQL DB
or

Data Tier No-5QL

Application Architecture — Data Composition

Data in Microservices approach

« Graph of interconnected microservices
« State typically scoped to the microservice
« Remote Storage for cold data

Web presentation
services

—_——_— —_——

\
| Stateless
: services

Stateful
services

—_—_——————

Stateless services Each microservice
with owns its model/data!

separate store

Application Architecture — Access Control

Using the API Gateway Service

Client Ie App o e e e e e e _ - S e C u r i ty

Quotas

————— e

API Gateway
VRN /57T Core

Web API
JavaScript / Angularjs

I
I
|
==y ool
. | /
I
Traditional WebApp Y A

Browser

Caching

HTML

HIML lm - L . . . o = RO u t i n g

Application Architecture - Communication

Asynchronous event-driven communication
Multiple receivers

_____________________________ 1
| Back end |
I lr’isEElZe_t microservice b
|
| | Database as | I
——————————————————————— - | |
| ! *” User-Profile Mlcroserwce N | Cache)
f L AT e
I : o Web APIservice e I E UserUpdated event > Buyer info I
|

| UpdateUser < | (Event Bus I
I | command ~ JUserUpdated euentl \ (Publish/subscribe channel)

| (Publish Action) | E UserUpdated event = Buyer info I

| ,

I | DB update : o -

: | (Ordering Microservice } |
| I Database } : |
T / . KCN [al Database | |

N e e e e o e - |_ |
| Eventual consistency across microservices based on event-driven async communication

Windows Container Networking

To do

* https://docs.microsoft.com/en-
us/virtualization/windowscontainers/manage-containers/container-
networking

https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-networking

Nano Server

